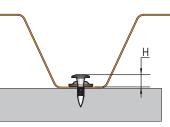

SPIT SBR9



APPLICATION LIMIT

(3) Designation according to European standard NF EN 10027-1
Ultimate tensile strength of base material (N/mm²)

CONTROL FIXING

- H_{mini} = 5 mm and H_{maxi} = 7 mm for guaranteeing the recommended working loads within the application limits.
- Maximum sheet thickness: 2 sheets with max thickness of 1 mm.

DESCRIPTION

Fix metal cladding sheets to steel framework.

PROPERTIES MATERIAL

The SBR9 pin is composed of:

- Shank in carbon steel

- Ultimate tensile strength: 2000 N/mm²
- Yield strength: 1600 N/mm²
- Hardness: 54-58 HRc
- Electrogalvanizing, Min zinc coating 7 μm

One steel washer

- Min zinc coating 8 µm
- The plate washer developed for a good clamping of the plates to avoid damages when firing.

TOOL

P370

RECOMMENDED LOAD

The recommended load given below, are suitable for a resistance of base material higher than 400 N/mm² and with a minimum thickness of 5 mm.

Sheet thickness ⁽¹⁾	Design resistance [kN]		Recommended load [kN]	
F _{uk} > 390N/mm ² (S320GD)	Tensile	Shear	Tensile	Shear
	N _{Rd}	V _{Rd}	N _{Rec}	VRec
0.75 mm	2.5	2.2	1.7	1.4
1.00 mm	3.2	3.2	2.2	2.2
1.25 mm	4.0	4.7	2.6	3.1
1.50 mm	4.1	4.7	2.8	3.1
2.00 mm	4.3	4.7	2.9	3.1

 $F_{rec} = F_{Rk} / 2.5$: the recommended load is calculated from the characteristic load and a global safety factor equal to 2.5.

Recommended load is calculated with a safety factor $\gamma_F = 1.5$.

 $^{(1)}$ For a sheet thickness equal to 2 mm, it is possible to use 2 sheets of 1 mm.

SI